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Abstract 

Hydrologic and climatic uncertainty is increasing in the western United States, and with it the 

need for models capable of capturing this uncertainty beyond what is seen in the historical record 

for planning and management purposes.  This is especially important for managing water 

resources on Lake Shasta under water supply and stream temperature constraints. We develop K-

nearest neighbor based stochastic simulation methods for daily streamflow and attendant stream 

temperature at five streams that drain into Lake Shasta. The methods can also generate scenarios 

conditioned on the larger climate – e.g., extreme wet or extreme dry. The ability of the methods 

to capture the historical variability of flow and temperature for Lake Shasta is demonstrated. 

Although, we developed and demonstrated this technique for Lake Shasta, they can be readily 

applied to any water resource systems. 

Keywords 

Lake Shasta, time series bootstrap, stochastic simulation, Disaggregation, Streamflow, Stream 

Temperature 

 

 



3 

 

1 Introduction 

The climate and hydrology of the western United States is in a state of increasing uncertainty.  

Winter and spring temperatures are increasing (Cayan et al. 2001), and spring snowpack in 

Northern California has decreased by 50% or more on average since 1950 (Mote et al. 2005, 

Regonda et al. 2005).  Mote et al. (2005) found that spring snowpack in the mountains of 

Northern California and the Cascades have the greatest sensitivity to reduction due to 

temperature changes and regional warming in the western United States.  Warming temperatures 

are also expected to result in earlier spring snowmelt runoff for the western United States that 

could lead to increased winter and early springtime floods and extended periods of summer 

drought (Stewart et al. 2004).  

Because of this uncertainty, reservoir managers are under increased pressure to ensure that 

changes in hydrology and climate will not affect their ability to meet obligations of downstream 

stakeholders, including management of downstream fisheries.  The construction of dams across 

the western United States during the 20th century disrupted downstream river ecosystems and 

impeded the upstream migration of salmon species (Botsford and Brittnacher 1998).  In some 

cases, species that were adapted to much colder upstream waters were subjected to stream 

temperatures that were warmer than their biology could tolerate.  Many important fish species in 

the western United States experienced population declines to such low levels that they were 

listed for protection under the Endangered Species Act (USFWS 2014). 

The ability of reservoir management under hydrologic uncertainty to provide adequate 

habitat for downstream fisheries can be examined with lake and stream temperature modeling 

tools.  Numerical models, such as CE-QUAL-W2 (Cole and Wells 2011), have the ability to 

simulate a reservoir’s thermal state, reservoir operations and the effects of operational decision-
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making on downstream water temperature, which provides useful information about the impacts 

to downstream fisheries (Hanna et al. 1999).  These models require inputs of flow and associated 

water temperatures to model the thermal profile of the reservoir. Realistic scenarios of the inputs 

can provide robust estimates of uncertainty in the thermal profile of the reservoir and incoming 

stream temperatures, thus enabling efficient management and planning strategies. Flow and 

temperature simulation models that can simulate variability in the input values beyond the 

observed record are imperative for planning for conditions that may not have been previously 

faced in the historic record.  

There is a rich history of using parametric statistical methods for generating flow (Salas et 

al., 1980; Wei, 2006). These models assume data to be normally distributed and fit linear 

functions to relate flow series from current time to previous times. Simulations from these 

models capture the basic statistics and normal distribution of the flow data. However, the 

requirement of normal distribution, which is hard to satisfy in most flow data, limits the 

application of these models. These limitations become acute when applying them for simulating 

flows are multiple locations simultaneously, which is needed in many applications. 

Nonparametric approaches have been proposed to improve upon the parametric approaches to 

better reproduce nonlinear and non-Gaussian features (Lall 1995). Kernel density (Sharma et al. 

1997) and K-nearest neighbor time series bootstrap methods (Lall and Sharma 1996) are widely 

used for simulating streamflow at a single site. Multi-site and daily simulation using 

nonparametric methods are computationally challenging.   Efforts at multi-site simulation have 

been proposed using kernel density estimators (Tarboton et al. 1998) and later using a K-nearest 

neighbor approach (Prairie et al. 2007). These approaches consist of modeling an aggregate 

series and then disaggregating the series in space and time, thus enabling simulation of flows at 
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multiple sites and finer time scales in an extremely parsimonious manner. However, these 

methods have difficulty in generating flows at daily time scales. Recently, Nowak et al. (2010) 

proposed a version of the resampling approach and demonstrated it for simulating streamflow at 

multiple sites and daily time scales. This method was able to simulate a rich variety of flow 

scenarios and variability beyond the historic range. The K-nearest neighbor resampling method 

has also been applied to simulate daily weather vectors (Rajagopalan and Lall 1999) and was 

subsequently modified for multi-site (Apipattanavis et al. 2007; Caraway et al. 2014). Our 

objective in this study was to develop a stochastic flow and temperature simulation tool that 

would generate a rich variety of hydrologic and associated water temperature scenarios for 

robust management and planning of water resources for aquatic habitat at Lake Shasta.  The 

paper is organized as follows: a description of the site and the W2 model is first presented, 

followed by a description of the proposed stochastic simulation methodology. Results from the 

simulation are next described with a discussion of their utility and application to other systems.   

2 Study System  

Shasta Lake is a large, deep and dendritic waterbody located roughly 32 kilometers (20 

miles) downstream of the headwaters of the Sacramento River watershed in northern California 

and 16 kilometers (10 miles) north of the city of Redding (Figure 1).  It is the largest storage 

reservoir in California, and supports an excellent fishery of both cold water and warm water 

species (USBR 2011).  The reservoir has four main tributaries: the Sacramento River, the 

McCloud River, the Pit River, and Squaw Creek.  According to the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM; PRISM 2014) Shasta Lake receives 

average annual precipitation of about 160 cm, with annual maximum temperatures of 23 °C and 

an annual minimum temperature of 10 °C. 
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3 CE-QUAL-W2 

 CE-QUAL-W2 (W2) is a two-dimensional hydrodynamic and water quality model (Cole 

and Wells 2011).  For the modeling effort on Shasta Lake, inputs of daily inflows, outflows and 

stream temperature as well as subdaily meteorology were needed.  W2 also has the capability of 

simulating selective withdrawal in which outflows can be distributed at different outlet 

elevations.  The W2 model for Shasta Lake was calibrated to in-reservoir measurements from 

1995 (Hanna et al. 1999, Saito et al. 2001).  Calibration metrics for the current version of the 

model are provided in Sapin (2014). 

Because W2 was to be used to evaluate outflow stream temperatures, W2 input requirements 

chosen for stochastic generation included daily inflows, daily inflow temperatures and hourly 

meteorology.  Hourly meteorology was needed to replicate diurnal temperature variations in the 

reservoir.  To generate these inputs, three types of data were obtained: incoming streamflow, 

incoming stream temperature and site meteorology (Table 1).   

 

4 Stochastic Simulation Methods 

As mentioned above, daily streamflow and the associated stream temperature at four 

locations on four streams that drain into Lake Shasta are required.  The overall simulation 

framework adapted in this research is shown in Figure 2. The simulation components for daily 

streamflow and stream temperature are described below.  

4.1 Stochastic Daily Flow Simulation (Steps 1-3) 

We used the disaggregation approach similar to that proposed by Nowak et al. (2010). 

Streamflow at all locations for all days in a calendar year are added to obtain an annual aggregate 
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flow series for the period 1946 – 2010. The US Bureau of Reclamation (USBR) computed 

inflows used in this analysis are the aggregate daily inflows into Lake Shasta for all tributaries 

that have been adjusted for gains from precipitation and losses from evaporation. The aggregate 

flow series is simulated using a lag-1 K-nearest neighbor (K-NN) approach (Lall and Sharma, 

1996). To start the simulation (Step 1), a flow z is selected at random, K-nearest neighbors of z 

are identified based on Euclidean distance, one of them is selected based on a probability 

function that gives the most weight to the nearest neighbor and least weight to the Kth neighbor, 

and the successor to the thus selected neighbor is the simulated value. This process is repeated to 

generate as many simulations as required. This nonparametric approach has been demonstrated 

to be robust at capturing non-normal and nonlinear features (Lall and Sharma 1996). Wavelet 

based methods can also be used to simulate the aggregate flows if significant nonstationarity in 

the spectrum are seen (Kwon and Lall 2006; Nowak et al. 2010). In short, the aggregate flows 

can be simulated from a variety of user-preferred approaches. 

The simulated annual aggregate flows are disaggregated to daily (Step 2) and spatial (Step 3) 

locations using the proportional disaggregation approach of Nowak et al. (2011). Again, K-NN 

of the simulated annual aggregate flow, z, are identified and one of them, say, year j, is selected 

based on the same probability function for the aggregate flow selection. The ‘proportion vector’ 

corresponding to year j, Pj, is selected. The proportion vector is the fraction of annual aggregate 

flow in year j for each day; the sum of the vector over the whole year adds to unity. The 

disaggregated daily flows are obtained by multiplying the simulated annual aggregate flow with 

the proportion vector - z*Pj.  The daily flows were then disaggregated spatially to the four 

locations according to the fractions of total flow each day that went to each tributary in year j. 

The disaggregation can also be performed whereby the annual aggregate flow is first 
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disaggregated to annual flow at the four locations and then the annual flow at each location is 

disaggregated to daily flow (e.g., Prairie et al. 2007). This approach is repeated to generate daily 

streamflow sequences at all the locations simultaneously for the desired length. The approach 

captures the spatial correlation and also captures the spatial and temporal ‘summability’ – i.e., 

the disaggregated values sum to the aggregate values.   

4.2 Stochastic Daily Stream Temperature Simulation (Step 4) 

Daily stream temperatures for each tributary were also stochastically generated using the k-

NN approach based on the simulated daily flow. For a given simulated flow on day t at one of 

the tributary locations, K-NN were identified from the daily historical flow at that location 

within a 7-day window centered on day t. One of the neighbors, i.e., an historical day, is selected 

and the stream temperature on this day becomes the simulated temperature for day t.   We used 

the California Data Exchange Center (CDEC) stream temperature dataset for this step. 

4.3 Simulating Extreme Wet and Dry Traces 

 In order to evaluate the performance of the water resources system to extreme conditions, 

input stream flows and temperatures that mimic extreme wet and dry conditions are necessary to 

drive the W2 model for planning purposes (Sapin, 2014). The proposed method above can be 

modified to produce extreme scenarios. For example, to produce extreme wet traces, the annual 

aggregate flow is sorted from wettest to driest and the wettest year assigned the highest weight 

and the driest the least – the weights are normalized so that they add to one – similar to the 

weight function used in the above steps (Lall and Sharma, 1996). An ensemble of annual 

aggregate flow is generated using this weight function resulting preferentially in a wet ensemble. 

The 99th percentile of the generated flow and the corresponding daily flows at all the locations is 
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considered the extreme wet scenario. The extreme dry scenario was similarly generated by the 

1st percentile flow of the generated ensemble is selected. 

5 Model Validation 

To validate the model’s performance we generated from 50 simulations each of 61 years 

long, same length as the historical data.  Boxplots of suites of monthly distribution statistics – 

mean, variance and skew from the simulations are plotted along with the corresponding value 

from the historical data. Distributional statistics of the simulated stream temperatures are also 

shown. Boxplots of monthly means of flow and stream temperature for the extreme wet and dry 

years are also shown to investigate the ability of the model to generate ensembles consistent with 

the desired extreme scenario. Comparison of distributional statistics from simulations to historic 

is the standard approach to evaluation stochastic simulation models (e.g., Lall and Sharma, 1996; 

Nowak et al., 2010). The box represents the interquartile range, the horizontal line the median, 

the whiskers extend to 5th and 95th percentiles of the simulations and the values outside this are 

shown as dots. The corresponding values of the historic data are shown as a solid line. The size 

of the box indicates the variability and the asymmetry of the whiskers about the box indicates the 

skew in the simulations. It is desirable for the historic values to fall within the box so as to be 

reproduced very well.   

 

6 Results 

 Figure 3 shows boxplots of monthly distributional statistics from the simulations for the 

aggregate inflows and for the Sacramento River, one of the four inflow tributaries to Shasta 

Lake. Boxplots for total aggregate inflows (Figures 3A, 3C, and 3F) and for the Sacramento 

River (Figures 3B, 3D, and 3G) show that the historical statistics are within the box and close to 
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the median (the horizontal line). The model is able to simulate an increased variance in the wet 

winter months compared to historic, indicating a rich variety in the daily flows. Boxplots of 

monthly mean and variance of stream temperature for Sacramento River (Figure 4) show an 

overall good performance. However, the model under simulates the mean in Jan and Dec.  

The spatial correlation of simulated flows among the locations is well captured, as to be 

expected (Nowak et al., 2011). Since the stream temperature is simulated as a consequence of 

flow, we computed the correlation between three locations from the daily temperature 

simulations and compared them to the historic correlations (Table 2). It can be seen that the 

simulations capture the historic spatial correlation very well. Considering that the stream 

temperature is simulated based on the simulated streamflow this performance is noteworthy. 

Boxplots of the other tributaries also exhibit similar features (figures not shown).   

 

To investigate the performance of the model in simulating wet and dry conditions, we 

generated 50 ensembles each 61 years long with preferential weighting described in Section 5. 

Boxplots of monthly aggregate inflows to Shasta Lake for wet and dry conditions are shown in 

Figure 5. It can be seen that the wet condition simulations show higher monthly totals compared 

to the historic data in all months, and even more so during the wet winter months, whereas the 

opposite is seen for dry condition simulations.   

The extreme wet year trace (i.e., the 99th percentile selection from 50 simulations of 61 

year ensembles with preferential selection of wet annual streamflow values) is shown as a solid 

line in Figure 6A along with the boxplot of historic monthly total flow. It can be seen that the 

extreme wet trace simulates high flows that could lead to flooding during the springtime, with 

flows beyond the range of the historic record. The synthetic streamflow in the month of March 

was almost 620 million cubic meters (500,000 acre feet) larger than the highest value in the 
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historical record.  Streamflows during the months of August and September were also higher 

than their respective largest values in the historical record. 

The 1st percentile selection from 50 simulations of 61 year ensembles with preferential 

selection of dry annual streamflow values produced a year of extreme dryness well below the 

average inflow into Lake Shasta in a given year (Figure 6B).  The furthest deviation from the 

historical mean occurred for the month of March where the streamflow was simulated at 5% of 

the historical mean streamflow. 

Boxplots of historic daily water temperatures in each month for the Sacramento River 

and the extreme wet and dry year water temperature traces are shown in Figure 7. Stream 

temperatures produced for the extreme dry year are on average 0.32°C higher than the stream 

temperature for the extreme wet year.  This difference was especially pronounced during the 

month of July where the average temperature difference was 1.78°C.  In addition, simulated 

spatial correlations between tributaries fit those of the historical record. 

 

7 Summary and Discussion  

We developed robust stochastic simulation techniques to generate a rich variety of 

scenarios of daily streamflow and stream temperatures at multiple streams that contribute to 

Lake Shasta. The techniques are based on a K-nearest neighbor time series bootstrap. The 

streamflows are generated using a space-time disaggregation approach wherein the spatial 

aggregate flow series is first generated and a historical proportion vector is bootstrapped to split 

the aggregate flow at multiple sites and all days of the year. The stream temperatures are 

simulated at each site conditioned on the simulated streamflow. This modeling approach 

preserves the spatial and temporal correlation structure. We also modified the bootstrapping 

approach to enable simulating scenarios of desired type such as extreme wet, extreme dry, etc. 
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Such desired scenario types are crucial for planning and management of hydrology and ecology 

in the lake and in the aquatic habitat downstream. Results from these techniques show that the 

simulations faithfully capture the historic statistics and produce realistic simulations for the 

preferred scenario types. The utility of these simulations by driving a CE-QUAL-W2 model in 

planning efforts has been demonstrated in Sapin (2014), and they can be applied for other 

situations where computer simulated modeling of combined inputs (in this case, flow and water 

temperature), are needed for analysis of uncertain events. 

The method proposed here improves upon the traditional linear methods, in their ability 

to capture nonlinear and non-Normal features. Furthermore, it is parsimonious and 

computationally efficient to generate multi-site daily simulation of flow and stream temperature. 

The method demonstrated here also provides a simple and robust alternative that can also be 

readily applied to generate scenarios based on future climate projections, including projected 

extreme wet and dry scenarios. Streamflow projections under climate change such as those 

developed by Vano et al. (2014) for the Colorado River could also be used in the bootstrapping 

(Brekke et al., 2009a,b).  
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Table 1.  Locations and descriptions of data downloaded for the project. 

Station Name Latitude Longitude Period of 

Record 

Data Type Source 

USGS 11368000 

McCloud River 

Above Shasta 

Lake CA 

40.958° 122.218° 10/1/1945 – 

9/30/2011 

Streamflow USGSa 

USGS 11365000 

Pit River Near 

Montgomery 

Creek CA 

40.844° 122.001° 10/1/1944 – 

9/30/2011 

Streamflow USGSa 

USGS 11342000 

Sacramento River 

A Delta CA 

40.940° 122.416° 10/1/1944 – 

9/14/2012 

Streamflow USGSa 

USGS 11365500 

Squaw Creek 

Above Lake 

Shasta CA 

40.857° 122.119° 10/1/1944 – 

9/30/1966 

Streamflow USGSa 

CDEC DLT 

Sacramento River 

at Delta CA 

40.939° 122.417° 11/1/89 – 

9/13/2012 

Stream Temperature CDECb 

CDEC PMN Pit 

River near 

Montgomery 

Creek CA 

40.843° 122.016° 5/1/1990 – 

9/13/2012 

Stream Temperature CDECb 

CDEC MSS 

McCloud River 

above Shasta 

Lake CA 

 

40.958° 122.219° 11/1/1989 – 

9/13/2012 

Stream Temperature CDECb 

NOAA AWS 

725920 Redding 

Municipal 

Airport, CA 

40.518° 122.299° 1/1/1994-

12/31/2010 

Air Temperature, 

Relative Humidity, Wind 

Speed, Wind Direction, 

Cloud Cover 

NOAAc 

USBR hydrologic 

data 

Shasta Lake, CA 

40.719° 122.419° 1/1/1944 – 

12/31/2010 

Computed Daily Inflow 

(adjusted for precip and 

evap), Reservoir Storage, 

Reservoir Elevation, 

Outlet Release 

USBRd 

 

a. US Geological Survey (USGS) - http://waterdata.usgs.gov/ca/nwis/ 

b. California Data Exchange Center (CDEC) - http://cdec.water.ca.gov/ 

c. National Oceanic and Atmospheric Administration (NOAA) – 

http://www.ncdc.noaa.gov/ 

d. US Bureau of Reclamation (USBR) 
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Table 2.  Spatial correlations of stream temperature for simulated stream temperatures 

and the historical record.  “PIT” is the Pit River, “MCC” is the McCloud River and 

“SAC” is the Sacramento River. 

 Correlation PIT-MCC PIT-SAC SAC-MCC 

Historical 0.913 0.919 0.949 

Simulated 0.891 0.901 0.893 

 

 

 



 

Figure 1. Location of Shasta Lake 

 

Figure 2. Overview of the stochastic generation process 



 

Figure 3. Statistics of total inflow to Shasta Lake and inflows from the Sacramento River only. 

Left panels show boxplots of (A) mean, (C) variance, and (E) skew of simulated daily total 

inflows computed each month. Right panels show boxplots of (B) mean, (D) variance, and (F) 

skew of simulated daily Sacramento River inflows computed each month.  

A B 

C D 

E F 

Historic mean Historic mean 

Historic variance Historic variance 

Historic skew Historic skew 



 
Figure 4. Boxplots of (left) mean and (right ) variance of simulated daily stream temperatures for 

the Sacramento River computed each month. 



  

Figure 4.  Boxplots of (left) wet and (right) dry condition mean total inflows to Shasta Lake 

computed each month from simulated daily values. The solid line is the historic average monthly 

total inflow to Shasta Lake.  

 

Figure 6. Boxplot of historic monthly total inflows to Shasta Lake and (A) the extreme wet year 

trace (99th percentile flow) and (B) extreme dry year trace (1st percentile flow) shown as solid 

line.  

A B 



  

Figure7.  Boxplot of historic monthly mean daily stream temperatures for the Sacramento River 

and (A) the extreme wet year trace and (B) extreme dry year trace shown as solid line.  
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